меню


Форма входа

Поиск
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Большой или маленький турбо

Проблемы маленьких турбин современных ДВС

Заводские турбосистемы современных автомобилей, нацелены на использование турбонаддува малых размеров, дабы уменьшить турболаг и обеспечить подхват двигателя с малых оборотов. На практике мы имеем двигатель, который имеет 70 и более % крутящего момента уже с полутора тысяч или около того, оборотов в минуту. Плюсы такого турбо, как уже стало ясно, это удобство использования автомобиля. Всем нам нравиться, когда автомобиль резво разгоняется с любых оборотов и без всяких задержек. Такой автомобиль легче продать! Но он обладает меньшим ресурсом и меньшей мощностью, чем автомобиль с большим турбокомпрессором. Причем, как ни странно, значительно меньшим ресурсом и мощностью!

Автомобиль рвущий с низов, так как турбина мгновенно откликается, не может показать выдающихся результатов мощности в связи с тем, что на высоких оборотах, такая турбина практически не "дует" и мотор работает в основном на атмосферной составляющей.

Проблемы смазки на малых оборотах

В современных двигателях большинство крутящего момента доступно уже на низких до 2000 об/мин. Но не стоит забывать, что система смазки лучше всего справляется со своей задачей на повышенных и высоких скоростях вращения. Чем быстрее окружная скорость набегающих поверхностей при вращении, тем устойчивей пленка масляного клина, при высоких нагрузках на шейки коленвала.

Маленькая турбина обладает малым входным отверстием, Что делает двигатель задушенным на средних и высоких оборотах. Выхлопные газы не могут с легкостью выйти с камеры сгорания, при этом повышается рабочая температура в цилиндрах, что сказывается крайне негативно на ресурсе двигателя.

Другими словами, на малых оборотах, масляный слой (при больших давлениях на коренные и шатунные шейки коленчатого вала) выдавливается из зазора вкладыш-шейка и получается полусухое трение которое в разы повышает износ кривошипно шатунного механизма.

Стоит учесть тот факт, что масляный насос при малых оборотах, обладает меньшей производительностью, при этом становиться совсем печально и боязно за мотор.

Тенденции современного автомобилестроения в общем

Многие могут возразить, мол такие солидные компании а-ля AUDI или FORD знают про это и позаботились обо всем, обеспечив мотор должным уровнем надежности при большой мощности, в том числе и на низких оборотах. На самом деле им нужно "ПРОДАТЬ", продать и еще раз продать автомобиль, который, как будтобы, обладает большой (кажущейся большой) мощностью. Надежностью же они обладают ровно такой, чтоб отходить гарантийный срок, а дальше хоть трава не расти! Почти все современные двигатели, даже атмосферники не обладают большим ресурсом и это ни для кого не секрет! Сверх высокая надежность автомобилей, уменьшает будущие продажи автокомпаний и сейчас все авто создаются для первого владельца, в дальнейшем уже он будет продавать автомобиль во вторые руки и никто, не будет винить автопроизводителя за "уставший мотор", винить будут только продавца мол "ушатал движок" итд.

Мощность заводских турбомоторов

Большая мощность некоторых заводских турбомоторов, достигается за счет усложнения конструкции мототра, напичкав его рядом дополнительных систем. Например устройств изменения длинны впускного коллектора, фазовращателей распредвалов итд, которые обеспечивают максимальную мощность мотора вместе с турбонаддувом, а на низких и средних оборотах работает крошечный турбонаддув.

Наддув на высоких оборотах

Справедливости ради стоит заметить, что даже маленький наддув создает определенный буст и на высоких оборотах, но это давление существует только (грубо говоря) во впуске и не создает ощутимого наполнения в цилиндрах двигателя. Так как применяются малые рессиверы, дроссельные заслонки и трубы впускных коллекторов небольшого диаметра. Да и собственно сам компрессор малого турбонаддува имеет порой, просто смешные диаметры патрубков.

Преимущества большого турбонаддува

Если нужен простой, мощный, с большим ресурсом двигатель, то он должен создаваться на основе довольно крупного турбонаддува. Буст не должен проявляться в полной мере, на малых оборотах, также прийдется мириться с некоторой задержкой, так как другого не дано. В автоспорте ходит поговорка: Если нет задержки, значит нет и наддува!

Другими словами на малых оборотах, крутящий момент должен обеспечивать хорошо построенный атмосферный двигатель с акцентом на низкие обороты, на высоких оборотах на первый план выходит турбокомпрессор, который при достаточных размерах надует любой "низовой" мотор, даже если он имеет не очень хорошую продувку в "верху." Но если мотор "верховой" то естественно он надует его еще больше!

Большой турбонаддув меньше нагревает впускной воздух. Соответственно от интеркуллера будет больше толку, либо можно использовать его уменьшенный вариант. Более холодный воздух попадет в цилиндры, соответственно мы получим больше мощности и меньшую возможность, возникновения аномальных процессов в камере сгорания.

Ресурс с большим турбо

Возможно я сейчас удивлю тех кто считает, что сильно надутые двигатели, с большой мощностью, имеют очень маленький ресурс и если поставить турбину побольше то она просто "разорвет" мотор. На самом деле может так сложиться, что один и тот же правильно построенный двигатель с турбо и без будет иметь практически одинаковый ресурс. Только второй будет иметь в 2 раза большую мощность.

Сказки? Читайте дальше! Основной износ сильнонагруженного двигателя, наблюдается в кривошипношатунном механизме. Атмосферный мотор, на высоких оборотах, имеет больший показатель инерционных составляющих нагрузок чем турбо. Представим тракт выпуска, когда коленвал толкает поршень вверх, а затем при прохождении верхней мертвой точки коленвал дергает его вместе с шатуном и пальцем вниз обеспечивая тракт впуска. Основная проблема в том что здесь происходит резкий перепад усилий когда колено толкает поршень вверх все зазоры выбраны внизу (шатун палец, коленвал шатун), затем колено всю эту систему резко дергает в обратном направлении, и все зазоры с размахом выбираются в обратном направлении, получаются своего рода ударные нагрузки. Здесь таятся самые большие разрушающие нагрузки в атмосферном двигателе, которые в максимальной мере проявляются на высоких оборотах вращения.

В турбомоторе, при открытии впускного клапана, еще до прихода поршня в верхнюю мертвую точку уже присутствует положительное давление за счет наддува, которое прижимает поршень к коленвалу при последующем движении его вниз к нижней мертвой точке. Так как как поршень постоянно прижимается в одном направлении, то знакопеременные нагрузки уменьшаются на КШМ. Хоть нагрузки на шейки и коленвала и пальца могут быть больше, за счет отсутствия знакопеременных составляющих нагрузок, ресурс деталей КШМ не уменьшается, а в некоторых случаях может даже увеличится.

Для примера: (Поршень диаметром 80мм при одном баре наддува, имеет подпор на впуске около 96 кг )

Также стоит заметить тот факт, что в надутом моторе с мощностью в 2 раза большей от атмосферного, максимальный пик давления, может быть лишь на 25% больше, при грамотно построенной системе. Хотя сумма площади давлений будет примерно в 2 раза выше. Связано это в основном с меньшей степенью сжатия и большей камерой сгорания в "разжатом" турбо двигателе. В то время как в двигателе с высокой степенью сжатия наблюдается большее расширение рабочей смеси и большее падение давления относительно максимального пика.


Гибридные гоночные технологии формулы один 2014

Гибридные технологии пришли в формулу один в 2009 году с появлением системы KERS (Kinetic energy recovery system) система кинетической рекуперации энергии. Основной принцип работы данной системы заключается в накоплении энергии торможения, с последующим ее использованием, с целью добавить мощности двигателю болида F1. По правилам максимальная добавка мощности не должна была превышать 60 кВт (около 80 лс) в течении 6.75 секунд, причем пилот имел выбор использовать все отведенное время сразу, либо использовать циклично по необходимости. KERS активировалась нажатием кнопки BOOST находящейся на руле болида.

Описание KERS систем, устанавливаемых на болиды Formula 1



электрическая система KERS

Полностью электрическая система KERS

Мотор генератор, установленный на переднем валу двигателя, при торможении болида ф1 переключается в режим генератора и накапливает электроэнергию в литий ионной аккумуляторной батарее. При необходимости прибавки мощности, пилот нажимает кнопку BOOST на руле и электроэнергия подается на мотор генератор, переключаемый в режим электро-двигателя мощностью 80 лс, которая прибавляется соответственно к основному (ДВС) Батареи сильно грелись и требовали дополнительного охлаждения. В связи с этим вместо аккумуляторной батареи, некоторые команды применяли супер-конденсаторы лишенные этого недостатка.

Электромеханические и механические системы KERS

Механическая система рекуперации энергии KERS Flybrid состояла из блока накопления энергии KERS, основанного на раскрутке маховика массой 5 кг до высоких оборотов (64500 об/мин) Энергия торможения через многоступенчатый редуктор уходила на раскрутку маховика в вакууме через быстродействующий вариатор Torotrak CVT.


Тороидальный вариатор Torotrak CVT обеспечивает передачу потока мощности от силовой установки на маховик и обратно с минимальными потерями энергии. Всего за 50 миллисекунд он способен изменить передаточное отношение с 6:1 до 1:1

Стальной, либо карбоновый маховик, массой 5 кг, диаметром 240 мм, раскрученный до 64500 об/мин, развивал необходимые 400 кДж, что в перещете на мощность составляло 80 лс с длительностью 6.75 секунд на каждом круге гонки. Вся система имела вес в 24 кг и занимала объем 13 литров.

Электромеханические системы имели маховик насыщенный магнито-заряженными материалами, в результате он становился ротором двигателя и мог вырабатывать, на неподвижном статоре электроэнергию, которую можно было аккумулировать в батареях с последующим ее использованием. Причем использовать можно, как отдельно, так и совместно с раскрученным маховиком.

Существовало несколько разновидностей электромеханических систем KERS, но всех их объединял принцип накопления энергии не в аккумуляторных батареях, а в раскрутке небольшого маховика до огромных оборотов. Причем система основанная на механическом аккумулировании энергии обладала лучшим КПД, по сравнению с электрическими KERS. Маховиковая KERS усваивала до 70% энергии торможения против 35% систем основанных на мотор-генераторе.

К концу 2013 года самые совершенные KERS системы укладывались по массе в диапазон 20-25 кг.



Cистема рекуперации энергии KERS Flybrid

Torotrak CVT

Тороидальный вариатор Torotrak CVT

сцепление связи маховика с вариатором

Сцепление связи маховика с вариатором. Диски сцепления имеют столь малый диаметр, так как им не приходиться передавать огромный крутящий момент, максимум 18 н/м. При 60000 об в минуту не нужен большой крутящий момент, чтоб получить 80 лс мощности. При дальнейшем понижении рабочих оборотов крутящий момент возрастает, а обороты падают, до привычных нам величин.

Системы рекуперации энергии (ERS) 2014

Системы рекуперации энергии (ERS) должны быть неотъемлимой частью всех болидов формулы один 2014 года. существенным отличием от систем KERS прошлых годов, является наличие двух систем сбора дополнительной энергии. Так как гоночные болиды ф1 опять стали турбированными, то теперь стало возможным собирать дополнительную энергию, не только высвободившуюся при торможении, но и тепловую энергию выхлопа, которую можно собрать с крыльчатки турбокомпрессора. Стоит заметить что правилами всячески поощряется накопление тепловой энергии выхлопа, так как развитие данных технологий позволит значительно повысить экономичность, как болидов Ф1 так и гражданских автомобилей, на которых будут установлены подобные системы. Стоит заметить что экономичность в формуле один теперь является ключевым фактором, так как на одну гонку в 2014 году выдается всего 100 кг гоночного топлива, в то время как в прошлом году, разрешенная масса топлива, составляла 150 кг.

Система рекуперации энергии (ERS)

Современный комплекс систем рекуперации энегий 2014 года ERS двигателя "renault energy f1" команды Рено

Все двигатели формулы один прошлых лет

Двигатели болидов формулы один прошлых лет

двигатель renault energy f1 Вся двигательная установка теперь состоит из:

1.6 литровый двигатель болида формулы один

1. 6 цилиндрового, V образного, турбированного 1.6 л. двигателя внутреннего сгорания, мощностью около 600 лс, максимальные обороты которого не должны превышать 15000 об/мин Турбонаддув должен быть одноступенчатым и обороты вращения турбины не должны превышать 125000 об/мин. Какое либо регулирование потока газов крыльчатки турбины строго запрещено. Максимальное давление наддува не ограничено и в среднем составляет 3.5 бар. Количество клапанов - 4 клапана на цилиндр. Форсунки непосредственного впрыска в цилиндры двигателя, должны развивать давление, не более 500 бар.

MGU-K от Magneti Marelli и ECU

Система рекуперации кинетической энергии MGU-K

Система рекуперации кинетической энергии торможения MGU-K. Представляет собой подобие ранее применяемой системы KERS, электронного типа. Электродвигатель-генератор является центральным местом в системе. Одной из его функций является накопление энергии в аккумуляторную батарею при торможении болида F1. Другой и основной функцией, является включение в режим электродвигателя. Именно он выдает дополнительные 160 лошадиных сил, разрешенных правилами FIA на 2014 год. Добавку мощности в 160 лс можно использовать в течении 33.3 сек на каждом круге гонки, что составляет 4 мегаджоуля энергии и это в 10 раз выше, ранее применяемых систем KERS. 160 лс максимально возможная разрешенная дополнительная мощность, но возможны варианты использования меньшей мощности, но более длительное время. Например 80 лс в течении 66.6 секунд. Разрешены и другие комбинации начиная с 1 лошадиной силы, главное не переступить барьер в 4 МДж. Система MGU-K связана с трансмиссией, аккумулятором и электронным блоком управления, который регулирует все потоки энергий, в том числе и энергию поступающую от системы MGU-H. По правилам, ограничивающим свободы конструкторов болидов ф1, мотор-генератор MGU-K не может иметь обороты больше чем 50.000 об/мин

MGU-H Magneti Marelli f1 2014

Система MGU-H двигателя формулы один

В системе MGU-H, как и в MGU-K применяется мотор-генератор, способный, как выдавать электроэнергию, так и превращать ее в механическую работу. Основная функция системы, преобразовывать остаточную тепловую энергию турбины в электрическую энергию подзаряжающую аккумулятор. Турбонаддув использует далеко не всю тепловую энергию для создания наддува ДВС. Находясь на одном валу с турбиной, вал генератора системы MGU-H может раскручиваться до разрешенных 125.000 об/мин, при этом, количество запасаемой им энергии не регламентировано и некоторые устройства успешно вырабатывают до 90 kBt. Что интересно эта полезная энергия, просто вылетела бы в трубу, не будь столь полезной системы MGU-H

Функция электродвигателя используется для раскручивания турбины до рабочих оборотов, чтоб уменьшить эффект турбо лаг на переходных режимах. MGU-H позволяет значительно увеличить КПД двигателя, что положительно сказывается на топливной экономичности. Без экономной силовой установки далеко не уедешь, так как в 2014 году, на одну гонку выдается всего 100 кг топлива. Помимо вышеперечисленных функций, применение MGU-H может распространяться для питания энергоемких систем двигателя, таких как маслонасос, бензонасос, помпа охлаждения двигателя итд. Команды по своему усмотрению, могут использовать данную возможность, заменив узлы на электрические и запитав их с помощью MGU-H, можно высвободить несколько дополнительных лошадей с ДВС.

Примечание: Стоит заметить что мотор-генераторы, при столь высокой мощности, имеют весьма компактные размеры. Все дело в том, что они работают на очень высоких оборотах вращения.

Чем выше обороты вала двигателя, тем с меньшим крутящим моментом достигается одна и та-же мощность. Страшно представить, какой массой и размерами обладает з-х фазный электродвигатель мощностью 120 кВт (160 лс) имеющий рабочие обороты 3000 об/мин. Масса таких электромоторов лежит в пределах 350-600 кг, сравните с мотор-генераторами F1 весящими 15-20 кг при той же мощности.

вариант исполнения MGU-H ф1 2014

ES электро батарея формулы один 2014

ES электро батарея - накопитель энергии болида формулы один 2014

В качестве накопителя энергии может использоваться любой источник, если его масса лежит в пределах 20-25 кг. Так одни команды используют литий ионные или литий полимерные элементы, другие планируют поставить на свои болиды супер-конденсаторы, у всех батарей есть свои достоинства и недостатки.

Источник накопления энергии объединяет обе системы рекуперации MGU-H и MGU-К в единое целое, и по средством распределения потоков энергий, происходит согласованная работа всего комплекса устройств, для достижения максимально возможной эффективности, получения большой мощности при достаточной экономичности, чтоб иметь возможность закончить гонку на 100 кг топлива.

Турбонаддув он же мотор-генератор

Развивает давление наддува 3-4 бар и при этом турбина спроектирована так, что создается большой избыток крутящего момента на валу крыльчатке. В обычных турбомоторах избыточная энергия никак не задействуется и просто вылетает в выхлопную трубу. Здесь же на валу установлен мотор - генератор который составляет часть гибридной системы MGU-H. В режиме генератора он вырабатывает электроэнергию, аккумулируемую в батарее, тем самым сильно повышая КПД двигателя, что очень сильно сказывается на экономичности. Так как на F1 установлен очень большой турбокомпрессор, то вероятно он обладал бы очень значительным турбо лагом. Поэтому, в переходных режимах, когда мощность потока выхлопа не может обеспечить раскрутку вала турбонаддува, до обеспечения оборотов оптимального давления наддува, подключается электродвигатель, помогающий раскрутке турбины.

Особенностью и отличием некоторых турбонаддувов F1 2014 является наличие двух впускных патрубков на улитке турбины. Данное решение позволяет эффективно использовать один турбонаддув в V образном двигателе, с двумя выпускными коллекторами. Любые средства регулирования турбины, westgate итд. запрещены регламентом FIA.

Типичный турбонаддув F1 2014

турбонаддув F1 2014

Управление гибридной системой

В отличии от KERS, когда всплеск дополнительной мощности, происходил в момент нажатия пилотом кнопки boost на руле болида Ф1, прибавка мощности в новых двигателях, осуществляется автоматически, при нажатии на педаль газа. В этом процессе используется очень сложная электроника и на нее завязано управление и контроль двигателя и всех дополнительных устройств участвующих в гибридной системе ERS Формулы один.

Так как на гонку выдается ограниченное количество топлива и минимальный вес болида вместе с гонщиком и полными баками топлива, также строго регламентирован 690 килограммами, появляется уникальная возможность, облегчить болид F1 за счет неполного заполнения топливного бака горючим, перед стартом. Правда в этом случае, придется сильно улучшить экономичность силовой установки, иначе есть риск, не доехать до финиша.

Прохождение гонки на столь скромном запасе гоночного топлива, да еще с возможностью использования еще меньшего его количества, может быть возможно, только за счет применения высокотехнологичных, точно настроенных гибридных систем. Вы только вдумайтесь, современные F1 используют дополнительные 160 лс в течении 33 секунд на круге! Часть мощности из которых могла быть безвозвратно потеряна при торможении, другая часть просто вылетела в выхлопную трубу!

В болидах формулы один хоть и используются самые передовые устройства управления двигателем. Это относится и к мощности процессорной части ЭКУ так и к алгоритмам работы двигателя и коробки переключения передач. Но в тоже время системы управления турбонаддувом не предусмотрено и более того строго запрещено правилами FIA. Управление может осуществляться только за счет двигателя-генератора подключенного к валу крыльчатки центробежного компрессора. Это ограничение создано чтоб не усложнять простую и эффективную конструкцию турбонаддува, добиваясь повышения его эффективности без вмешательство в конструкцию.

 
Турбо применение

 
 
Турбонагнетатель - простое устройство. Это не ничто иное, как воздушный насос, который приводит в движение энергия выхлопных газов, выходящих из двигателя. Из энергии, выработанной в процессе сгорания, приблизительно третья часть уходит в систему охлаждения, третья часть становится мощностью, вращая коленвал, и третья часть выбрасывается из выхлопной трубы в виде тепла. Именно эту последнюю треть мы можем использовать для вращения турбины.
Рассматривая то, что из 200 л.с. произведенных двигателем, приблизительно 70 л.с. вылетают из выхлопной трубы в виде тепла. Это - огромное количество энергии, которая могла быть использована лучше. Для сравнения, когда последний раз, вы видели воздушный вентилятор, в 70 лошадиных сил? Таким образом, не настолько трудно вообразить потенциал турбины для перемещения огромных объемов воздуха. Система турбонаддува состоит из турбонагнетателя и частей, необходимых для объединения этого в одну систему с двигателем. Система турбонаддува - не простое устройство. Однако, нигде на этих страницах вы ненайдете такие вещи как формы поверхностей, созданных наконечниками компрессорного колеса. Поэтому, вы можете читать с доверием, это - не технический трактат о тайнах внутренних работ турбонагнетателя. Данное руководство предназначено в первую очередь для практического применения установки турбонаддува на двигатель внутреннего сгорания. 
    

 
 
 
 

 




Создать бесплатный сайт с uCozCopyright MyCorp © 2024